I. A particle of mass \(m \) is moving under the influence of a potential, \(U(x) \), where

\[
U(x) = \frac{k}{4} \left(-x^2 + \left(\frac{2}{3a} \right) x^3 \right),
\]

where \(k > 0 \) and \(a > 0 \).

(a) Sketch the potential diagram. Find two possible equilibrium positions. Which one is stable?

(b) Find the frequency of small oscillations about the stable equilibrium.

II. An object of mass \(m \) is moving in the \(x \)-direction through a resistive medium where the resistive force varies with its velocity as:

\[
F(v) = -mkv^3,
\]

where \(k > 0 \). At \(t = 0 \), \(x(0) = 0 \) and \(v(0) = v_0 > 0 \).

(a) Find \(v(t) \) for \(t > 0 \).

(b) What is the limiting velocity as \(t \to \infty \)?

III. A particle of mass \(m \) is moving in the \(x - y \) plane, acted on by a restoring force in the \(y \) direction. The Lagrangian would be

\[
L = \left(\frac{m}{2} \right) \left(\dot{x}^2 + \dot{y}^2 \right) - m\omega_0^2 y^2,
\]

except that the motion is subject to a constraint, \(x(t) = y(t) - \left(\frac{2A}{\omega^2} \right) \sin \omega t \).

(a) Write down the Euler-Lagrange equation for \(y(t) \).

(b) The Euler-Lagrange equation obtained above can be solved by a method which you should be familiar with. If \(y(0) = 0 \), and \(\dot{y}(0) = 0 \), find \(x(t) \) for \(t > 0 \).