Lecture 7 p 4

The curvature is a scalar. To find the curvature, we're going to consider a 2-D section of the space.

(Why? well, when there's only one curvature we can pick any two dimensions, curvature only defined in Dim ≥ 2.)

Let's look at the section \(\Theta = \text{constant} = \frac{\pi}{2} \).

The spatial part of the metric is then
\[
G(r) \, dr^2 + r^2 d\phi^2 \quad (\sin^2 \Theta = 1 \, \text{if} \, \Theta = \frac{\pi}{2})
\]

\[
G_{\phi\phi} = \begin{pmatrix}
G(r) & 0 \\
0 & r^2
\end{pmatrix}
\]

In 2-D, the curvature can either be derived from the definition of \(R_{\mu\nu} \) or, from a formula derived from Gauss:

\[
K = \frac{1}{2 \, G(r) r^2} \left\{ 0 - 2 + \frac{1}{2 \, G(r)} \left[G'(r) r^2 + \frac{1}{2} \left(\frac{G'}{G} \right)^2 \right] \right\}
\]

\[
K = \frac{1}{2 \, G(r) r^2} \left\{ -2 + \frac{G'(r)}{G(r)} + 2 \right\}
\]

\[
K = \frac{G'(r)}{2 \, G(r) r^2} \rightarrow \Delta \text{K} = \frac{G'(r)}{(G(r))^2} = \frac{3}{r} \left(-\frac{1}{G(r)} \right)
\]

\[
\frac{1}{G(r)} = C - \frac{2 \, K}{G(r)}
\]

\[
G(r) = \frac{1}{C - K r^2} \rightarrow C = 0 \quad \text{well, if} \, K = 0 \, \text{space metric has} \, q(t) = \frac{1}{3}
\]
Therefore
\[S(r) = \frac{1}{1 - Kr^2} \]

so
\[\sum \left(\frac{c^2 dt^2}{1 - Kr^2} - \frac{dr^2}{r^2} - r^2 d\theta^2 - r^2 \sin^2 \theta d\phi^2 \right) \]

\[\text{Note } Kr^2 = \text{dimensionless} \quad \Rightarrow K \text{ has dimensions } \frac{1}{r^2} \text{ (i.e. sphere)} \]

However, we haven't finished: although the cosmological principle is satisfied, in general the perfect cosmological principle is not
\[r \to r(t) \]

Let's define \(r = a(t) x \quad \Rightarrow \frac{dr}{dt} = a(t) \frac{dx}{dt} \]

\[ds^2 = c^2 dt^2 - a^2(t) \left[\frac{dx^2}{1 - ka^2 x^2} - a^2 x^2 d\theta^2 - a^2 x^2 \sin^2 \theta d\phi^2 \right] \]

\[k = \frac{ka^2}{1 - ka^2 x^2} \quad \text{dimensionless curvature} \]

\[ds^2 = c^2 dt^2 - a^2(t) \left[\frac{dx^2}{1 - k x^2} + x^2 d\theta^2 + x^2 \sin^2 \theta d\phi^2 \right] \]

This (and from now on we'll use \(r \) instead of \(x \) as a comoving coordinate) is our metric tensor; the Robertson-Walker metric.

Because the stress-energy tensor has only two non-trivial components, so the Einstein tensors must also have two non-trivial components \(G_{00} \) and \(G_{\mu \nu} \) \((\mu=0)\).

Now that we have the metric, we can compute these components directly from \(g_{\mu \nu} \):
8.1a
Nonline element

From $g_{\mu \nu}$ our only non-zero elements are

\[g_{00} = e^2 \quad g_{11} = -a^2 \quad g_{22} = r^2 a^2 \quad g_{33} = -\alpha \gamma^{r_0} \sin^2 \theta \]

Note that because \(g^{\mu \nu} g_{\mu \nu} = 1 \)

\[g^{00} = e^2 \quad g^{11} = -\frac{1}{a^2} \quad g^{22} = \frac{1}{r^2} \quad g^{33} = -\frac{1}{a^2 r^2 \sin^2 \theta} \]

We'll also need \(\sqrt{-g} \) (the determinant) \(= e^{-3r_0} \frac{\sin \theta}{\sqrt{1 - kr^2}} \)

Taking the definition

\[\Pi^{i \mu}_{\nu \rho} = -g^{ik} \left[-\frac{\partial g_{\mu \rho}}{\partial x^k} + \frac{\partial g_{\mu k}}{\partial x^\rho} + \frac{\partial g_{k \rho}}{\partial x^\mu} \right] \]

We can verify that there are only 12 non-zero affine connections.

\[\Pi^0_0 = \frac{1}{c^2} \quad \Pi^1_1 = \frac{a^2}{c(1-kr^2)} \quad \Pi^2_2 = \frac{a^2 r^2}{c} \quad \Pi^3_3 = \frac{a^2 r^2 \sin^2 \theta}{c} \]

\[\Pi^{11} = \frac{kr^2}{1-kr^2} \quad \Pi^{12} = \Pi^{13} = \frac{1}{r} \]

\[\Pi^{22} = r(1-kr^2) \quad \Pi^{23} = -r(1-kr^2) \sin^2 \theta \]

\[\Pi^{33} = \sin \theta \cos \theta \quad \Pi^{23} = c \cot \theta \]

From these we can build \(R_{\mu \nu} \) and \(\mathbf{R} \). For \(R_{\mu \nu} \) a useful relation is:

\[R_{\mu \nu} = \frac{\partial^2 \ln(E)}{\partial x^\mu \partial x^\nu} + \Gamma^m_{\mu \rho} \Gamma^n_{\nu \rho} - \Gamma^l_{\mu \rho} \Gamma^m_{\nu \lambda} \frac{\partial \ln(E)}{\partial x^l} \]

\(\Gamma^i_{\mu \nu} = g^{i \mu} R_{\nu \lambda} \)
After a lot of algebra, it turns out only 4 elements of R^k_i are non-zero.

As expected, the off-diagonal terms are all zero, and the spatial ones are identical:

$$R^0_0 = \frac{3}{c^2} \frac{\ddot{a}}{a}$$

$$R^1_1 = R^2_2 = R^3_3 = \frac{1}{c^2} \left(\frac{\dddot{a}}{a} + 2 \frac{\ddot{a}^2}{a^2} + 2 \frac{k c^2}{a^2} \right)$$

Hence, the Ricci scalar is

$$R = \frac{6}{c^2} \left(\frac{\dddot{a}}{a} + \frac{\ddot{a}^2}{a^2} + \frac{k c^2}{a^2} \right)$$

So

$$G^0_0 = R^0_0 - \frac{1}{2} R = -\frac{3}{c^2} \left(\frac{\dddot{a}}{a^2} + \frac{k c^2}{a^2} \right)$$

$$G^1_1 = G^2_2 = G^3_3 = R^1_1 - \frac{1}{2} R = -\frac{1}{c^2} \left[\frac{2 \dddot{a}}{a} + \frac{\ddot{a}^2}{a^2} + \frac{k c^2}{a^2} \right]$$

The $G^0_0 = \frac{8 \Pi \sigma}{c^4}$ equation now looks like

$$-3 \left(\frac{\dddot{a}}{a} + \frac{k c^2}{a^2} \right) = \frac{8 \Pi \sigma}{c^4}$$

The second equation (the G^1_1 equation) can be solved by subbing in

$$G^1_1 = \frac{8 \Pi \sigma}{c^4} \Rightarrow -\frac{1}{c^2} \left[\frac{2 \dddot{a}}{a} + \frac{\ddot{a}}{a} + \frac{k c^2}{a^2} \right] = \frac{8 \Pi \sigma}{c^4}$$

$$-\frac{1}{c^2} \left[\frac{2 \dddot{a}}{a} - \frac{8 \Pi \sigma}{c^2} \right] = \frac{8 \Pi \sigma}{c^4}$$

$$\Rightarrow \dddot{a} + \frac{8 \Pi \sigma}{a} = \frac{8 \Pi \sigma}{c^2} \frac{p + \frac{3 \Pi \sigma}{c^2}}{2}$$

or

$$\dddot{a} + \frac{8 \Pi \sigma}{a} = \frac{8 \Pi \sigma}{c^2} \frac{p + \frac{3 \Pi \sigma}{c^2}}{2}$$

$$\Rightarrow \frac{2 \dddot{a}}{a} = -\frac{8 \Pi \sigma}{c^2} p - \frac{8 \Pi \sigma}{c^2} p = -\frac{8 \Pi \sigma}{c^2} \left[p + \frac{3 \Pi \sigma}{c^2} \right]$$
Lecture 8.2

These are two of the fundamental equations of Cosmology -
The Friedmann equation and the acceleration equation:

- A third is needed in general, an equation of state:
 \[P(v) \]
 - for "dust" \(P = 0 \)
 - for relativistic particles (and photons) \(P = \frac{\rho}{3} \)
 - Cosmological constant \(P = -\Lambda \)

in general
\[P = \omega \rho \]
\(\omega \) - equation of state parameter.

With these 3 equations, we can solve for the evolution of the Universe

\[
\left(\frac{\dot{a}}{a} \right)^2 + \frac{kc^2}{a^2} = \frac{8\pi G}{3} \rho
\]

\[
\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left[P + 3\rho \right]
\]

\[P = \omega \rho \]

Example: Let's imagine an empty Universe \(g = P = 0 \)

\[
\left(\frac{\dot{a}}{a} \right)^2 = -\frac{kc^2}{a^2} \rightarrow \ddot{a} = -\frac{kc^2}{a^2} \text{ [also constant]}
\]

\[\ddot{a} = 0 \]

\[\rightarrow a \rightarrow \text{ constant expansion } a(t) \rightarrow T
\]

Before we go into that, let's talk about the RW metric:

A few observations:

First, there's an alternate form of the metric:

if you make the coordinate transformation

\[x = \int \frac{dr}{\sqrt{1 - kr^2}} \text{ then } \Delta x = \frac{dr}{\sqrt{1 - kr^2}} \]
Lecture 8.3

The integral can be evaluated for different \(k \):

- \(k = 0 \):
 \[X = \int \frac{d\tau}{\sqrt{1 - \tau^2}} = \tau \]

- \(k = -1 \):
 \[X = \int \frac{d\tau}{\sqrt{1 + \tau^2}} = \sinh \tau \]

- \(k = 1 \):
 \[X = \int \frac{d\tau}{\sqrt{1 - \tau^2}} = \sin \tau \]

\[r = X \]
\[r = \sinh x \]
\[r = \sin x \]

\[ds^2 = c^2 dt^2 - a^2(t) \left(\frac{dx^2}{\sinh^2 x} + \frac{dz^2}{\sin^2 z} + \frac{d\theta^2 + \sin^2 \theta d\phi^2}{\sin^2 \theta} \right) \quad (k = 0) \]

\[ds^2 = c^2 dt^2 - a^2(t) \left[d\tau^2 + \sinh^2 x \left(d\theta^2 + \sin^2 \theta d\phi^2 \right) \right] \quad (k = -1) \]

\[ds^2 = c^2 dt^2 - a^2(t) \left[d\tau^2 + \frac{d\theta^2 + \sin^2 \theta d\phi^2}{\sin^2 \theta} \right] \quad (k = 1) \]

\[S_{k}(\tau) = \begin{cases} x & (3/2 \quad k = 0) \\ \sinh x & (k = -1) \\ \sin x & (k = 1) \end{cases} \]

Let's think about the "surface area" as a spatial "hypersurface" (\(dt = 0 \))

\[\int_{0}^{\frac{\pi}{2}} \int_{0}^{2\pi} \int_{0}^{a(t)} \frac{d\tau}{S_{k}(\tau)} \frac{d\theta}{\sin \theta} d\phi = \int_{0}^{\frac{\pi}{2}} \int_{0}^{2\pi} d\theta d\phi \frac{a(t)}{S_{k}(\tau)} \]

\[A_{\text{area}} = 4\pi a(t) S_{k}(\tau) \]

These are a few results that are relevant to Cosmology that arise directly from \(a(t) \): the redshift and time dilation.
lecture 9-1

Consider light from some distant galaxy traveling to you: you are at \(r_0 \), \(\theta_0 \), \(\phi_0 \). For simplicity, the galaxy will be at \(r_1 \), \(\theta_0 \), \(\phi_0 \).

Light travels on null geodesics.

\[ds^2 = 0 \]

but \[ds^2 = c^2 dt^2 - a^2(t) dr^2 = 0 \]

\[c \frac{dt}{a(t)} = \frac{dr}{\sqrt{1 - kr^2}} \]

We can separate the \(r \)-dependent and \(t \)-dependent parts:

\[\int \frac{c \ dt}{a(t)} = \int \frac{dr}{\sqrt{1 - kr^2}} \]

What’s significant about this? First, let’s consider two “crests of a light wave,” emitted at two (nearly simultaneous) times \(t_e \) and \(t_e + \Delta t \). The null geodesics are:

\[\int_{t_e}^{t_e + \Delta t} c \frac{dt}{a(t)} = \int_{r_e}^{r_e + \Delta r} \frac{dr}{\sqrt{1 - kr^2}} \]

and

\[\int_{t_e}^{t_e + \Delta t} c \frac{dt}{a(t)} = \int_{r_e}^{r_e + \Delta r} \frac{dr}{\sqrt{1 - kr^2}} \]

are the same! (As long as the galaxy is at rest in comoving coordinates.)

so

\[\int_{t_e}^{t_e + \Delta t} c \frac{dt}{a(t)} = \int_{t_0}^{t_0 + \Delta t} c \frac{dt}{a(t)} \]

most of this is the same. The only non-trivial part is
Lecture 9 p 2

\[\int_{t_0}^{t} \frac{dt}{a(t)} = \int_{t_0}^{\tau t} \frac{dt}{a(t)} \]

but these are such small time stretches that \(a(t) \) is constant for then

\[\frac{1}{a(t)} \int_{t_0}^{\tau t} dt = \frac{1}{a(t_0)} \int_{t_0}^{\tau t} dt \rightarrow \frac{1}{a(t_0)} \Delta \tau = \Delta \tau \]

So if you have events that are separated by \(\Delta \tau \) when they are emitted, they will be observed to be emitted at

\[\Delta \tau = \Delta \tau \frac{a(t_0)}{a(t_0)} \]

this is also true for successive light ray... at the time between crests measures

\[\lambda_0 = \Delta \tau = \frac{a(t_0)}{a(t_0)} \]

but \(\frac{\lambda_0}{\lambda} = \frac{1}{1+z} \) the redshift.

So \(\frac{\lambda_0}{\lambda} = 1 + z \), but from above:

\[\frac{a(t_0)}{a(t_0)} = (1+z) \]

The factor \(H \tau \) measures the change in size of the universe.

That is what the cosmological redshift measures

One further consequence is that the energy carried by the photons is \(E = \frac{h}{\lambda} \).

E.g., \(a(t_0) \frac{1}{a(t_0)} (1+z) \). Let's consider

next what happens to an individual photon but to a collection.
Let's consider a distribution of particles with some volume \(d^3\mathbf{r} \) and with momenta in \(d^3\mathbf{p} \) (photons have \(\frac{1}{2} \mathbf{p} \times \mathbf{d}\mathbf{p} \), recall)

then we can write

\[
\frac{dN}{d^3\mathbf{p}} = \mathcal{F}(\mathbf{r}, \mathbf{p}, t) \, d^3\mathbf{r} \, d^3\mathbf{p}
\]

how does \(d^3\mathbf{r} \) transform with time?

\[
\mathcal{F}(\mathbf{r}, \mathbf{p}, t) \sim d^3\mathbf{r} \sim a^3(t)
\]

but \(d^3\mathbf{p} \sim V^3 \propto \frac{1}{V} \propto \frac{1}{a^3(t)} \)

So \(d^3\mathbf{r} \, d^3\mathbf{p} \) is constant. If the reaction conserves number (free streaming) \(dN = \text{constant} \)

\[
\mathcal{F}(\mathbf{r}, \mathbf{p}, t) = \text{constant in } t.
\]

We can turn this around:

\[
\int \frac{dN}{d^3\mathbf{p}} = \text{constant} \implies \frac{dN}{d^3\mathbf{r}} \sim \frac{d^3\mathbf{p}}{d^3\mathbf{r}}
\]

for photons streaming

\[
d^3\mathbf{r} \propto d^3\mathbf{r} \, c \, d\lambda
\]

\[
d^3\mathbf{p} \propto V^3 \, d\lambda \, d\Omega
\]

\[
\implies \frac{dN}{d\lambda \, d\Omega \, c \, d\lambda} = \text{constant}
\]

but \(E = N \, h \nu \)

\[
\frac{dE}{d\lambda} = dN \, h \nu \quad dN \propto \frac{dE}{d\lambda}
\]

\[
\implies \frac{dE}{d\lambda \, d\Omega \, d\lambda \, c \, d\lambda} = \text{constant}
\]

but \(\frac{dE}{d\lambda \, d\Omega \, d\lambda \, c \, d\lambda} \equiv I_\nu \) the specific intensity

\[
\implies I_\nu / V^3 = \text{constant}
\]
Now let's think back to our specific intensity

\[I_{\nu} = \frac{J}{4\pi} \text{ energy/}\text{m}^2/\text{sec/steradian}/\text{Hz} \]

Let's consider an infinitesimal range in frequency \(d\nu \)

\[I_{\nu} d\nu \rightarrow \frac{J}{4\pi} \text{ energy/}\text{m}^2/\text{sec/steradian} \]

There is a specific form of \(I_{\nu} \) we're interested in: the blackbody function.

\[I_{\nu} = B_{\nu} = \frac{2\pi}{C^2} \frac{\nu^3 d\nu}{e^{\frac{h\nu}{kT}} - 1} \]

Let's consider an isotropic radiation field.

The number of photons crossing the surface of a sphere of volume \(dV \) is (with frequency \(\nu/d\nu \))

\[\int I_{\nu} \cos \theta d\Omega d\nu = 4\pi I_{\nu} \cos \theta d\Omega d\nu = 8\pi h \frac{C^2}{C^2} \frac{\nu^3 d\nu}{e^{\frac{h\nu}{kT}} - 1} \]

The number of photons is found by dividing by \(h\nu = \epsilon \)

\[\frac{8\pi}{C^2} \frac{\nu^2 d\nu}{e^{\frac{h\nu}{kT}} - 1} \]

But photons travel at \(v = c \), so the number density inside the sphere is just the number density crossing the sphere.

\[\rho(\nu, d\nu) = \frac{8\pi}{C^3} \frac{\nu^2 d\nu}{e^{\frac{h\nu}{kT}} - 1} \]

so

\[\rho(\nu, d\nu) dV = \frac{8\pi}{C^3} \frac{\nu^2 d\nu}{e^{\frac{h\nu}{kT}} - 1} \]

\[dV \text{ is } N = \int \rho(\nu, d\nu) dV = \frac{8\pi}{C^3} \frac{\nu^2 d\nu}{e^{\frac{h\nu}{kT}} - 1} \]

Oke, what happens to these photons as the universe expands
\[\text{Well} \]

\[dV = \frac{dV_0}{a_j^3} = \frac{dV_0}{(1+z)^3} \]

\[V = V_0 (1+z) \]

\[dV = dV_0 (1+z) \]

and \(N = N_0 \) (conservation of number)

\[N = \frac{8 \pi}{C^3} \frac{V^2 J dV dV_0}{e^{\frac{hV}{kT}} - 1} = N_0 = \frac{8 \pi}{C^3} \frac{V_0^2 J dV_0 dV_0}{e^{\frac{hV_0}{kT_0}} - 1} \]

all the factors of \((1+z) \) cancel out except the one in the exponential

\[\Rightarrow \frac{hV}{kT} = \frac{hV_0}{kT_0} = \frac{hV_0 (1+z)}{kT} \]

\[\Rightarrow T = T_0 (1+z) \]. But, because \(V_0 \) is conserved by the expansion

A blackbody distribution stays a blackbody distribution.

(back to 10.2)
Lecture 10 p2

10 I_ν /ν^3 is a constant. Why is it important?

Consider the Planck distribution:

The specific intensity $I_\nu = B_\nu \equiv 2\pi \frac{\hbar \nu^3}{c^2} \left(\frac{1}{e^{\hbar \nu/kT} - 1} \right)$

but

$$\frac{B_{\nu} \text{emitted}}{\nu \text{emitted}^3} = \frac{2\pi \nu^3}{c^2} \left(\frac{1}{e^{\hbar \nu/kT} - 1} \right) = \frac{2\pi h \nu^3}{c^2} = \frac{2h \nu^3}{c^2 e^{\hbar \nu/kT} - 1}$$

$$\frac{h \nu kT}{c^2} = \frac{h \nu kT_0}{c^2} \rightarrow \frac{\nu}{T} = \frac{\nu}{T_0}$$

$$\text{but } \nu = \frac{\nu}{1+z} \Rightarrow c \nu e = \lambda_0 = \lambda(1+z)$$

$$T_0 = T_e \left(\frac{\nu}{c} \right) = T_e / (1+z) \rightarrow \text{A Planck distribution stays a Planck distribution, but with } T \to \frac{1}{1+z}$$

(THIS is why the CMB temperature is 2.7 K today).

Oka, now back to our galaxy.

Our equation for

The geodesic for light dives

$$\int dt / \alpha(t) = \int \frac{dr}{\sqrt{1 - kr^2}} = S_k(p)$$

Padmanabhan derives at this point

$$d_l (z) = a \frac{d_z}{dz} \frac{d_z}{dz}$$

$$da = a_0 \frac{d_1 / (1+z)}{dz}$$

since $dz / dt = dz / d_z \frac{d_1 / (1+z)}{1+z}$
Lecture 10.3

\[
\frac{dt}{dz} = - \frac{dH(z)}{H(z)} \frac{dz}{dz} = \int_0^z \frac{dt}{dt'} \frac{dH(z)}{H(z)} = \frac{1}{a_0} \int_0^z \frac{dH(z)}{H(z)} \, dz
\]

So \(dp(z) = \frac{a_0}{a} \frac{1}{z} \int_0^z dH(z) \, dz \).

\(dp(z) \) is an interesting quantity, but is not an observable → it is measured at constant \(t \). The ways distances are observed are observed:
1) Luminosity distance \(d_L \):

\[
L \text{ light spreads out} \quad F = \frac{L}{4 \pi a_0^2} \quad \text{as area} \quad \frac{dL}{dt} = \frac{dL}{dt} (1 + z)
\]

\[
F = \frac{dL}{dt} = \frac{dL}{dt} \frac{dt}{dt} (1 + z)^2 = \frac{dL}{dt} \frac{dt}{dt} (1 + z)^2
\]

\[
\rightarrow dc = c dt = dp (1 + z)
\]

However, in general, we observe \(F \) in some frequency range \(\bar{F} \):

\[
\int \bar{F} \, dp (1 + z)
\]

The second form is the angular diameter distance \(d_A \):

\[
\bar{F} = \frac{D}{dp} \quad (\text{for } D < dx)
\]

The physical size subtended is \(\Theta \) at \(t = t_0 \):

\[
\Theta = \frac{D}{dp} \quad (\frac{dx}{dp})_{x=0} = \frac{D (1 + z)}{dp}
\]

\[
\rightarrow \frac{dx}{dp} = \frac{dp}{dt} (1 + z) \rightarrow \frac{dx}{dp} = \frac{dc (1 + z)^2}{dp}
\]
Lecture 10.4

Two more very brief topics.

1) Horizons -
 Let's go back to the equation we derived for a geodesic:

 \[C \int_{t_e}^{t_0} \frac{dt}{a(t)} = \int_0^r \frac{dr}{\sqrt{1-kr^2}} = S_k(r_g) \]

 \[\Rightarrow r_g = S_k \left(C \int_{t_e}^{t_0} \frac{dt}{a(t)} \right) \]

 Let's consider

 \[k=1 \] then \(S_k \) has a maximum value.

 \[\Rightarrow r_g \] will have a maximum value. \(dp \) is \(r_g \) has a maximum, too.

 In general, for any universe with a twin, there will be a \(dp_{\text{max}} \):

 \[dp_{\text{max}}(t) = a(t) S_k \left(C \int_{t \text{ twin}}^{t_e} \frac{dt}{a(t)} \right) \]

 This is the particle horizon.

 \[\text{Similarly, if } t=t_{\text{max}} \]

 there is a \(dp_{\text{max}}(t) = a(t) S_k \left(C \int_{t_{\text{max}}}^{t_e} \frac{dt}{a(t)} \right) \]

 where events \(dt \)

 \[dp > dp_{\text{max}} \] will not be seen by us - this is the event horizon.
Lecture 16.5
Practical Considerations

In all the previous sections, we've dealt with terms in terms of integrals of $a(t)$. In the next section, we'll consider solutions of the Friedmann equation that give $a(t)$. Different cosmological models.

However, you can be more specific for small z (or $\Delta t \approx t$ small).

Taylor expand $a(t)$ around $a(t_0)$

$$a(t) = a(t_0) + \frac{d}{dt}(t-t_0) + \frac{1}{2} \frac{d^2}{dt^2}(t-t_0)^2 + \cdots$$

$$a(t) = a(t_0) \left[1 + \frac{\dot{a}}{a}(t-t_0) + \frac{1}{2} (t-t_0)^2 \frac{\ddot{a}}{a} + \cdots \right]$$

where $\dot{a} = \frac{\dot{a}}{a} \mid_{t=t_0}$ (Hubble's constant) $q_0 \equiv \frac{\ddot{a}}{\dot{a}^2}$

This expansion is valid as long as $(t-t_0)H_0$ is small:

$$\int_{t_0}^{t} \frac{dt}{a(t)} \approx \frac{1}{H_0}$$

With this expansion, we can integrate

$$\int_{a(t_0)}^{a(t)} dt = c \left[z - z_0 \right] + \cdots$$

but

$$\frac{a(t)}{a(t_0)} = \frac{1}{H_0^2}$$

so the equation above to give $\Delta \theta$.

After some algebra:

$$\int_{a(t_0)}^{a(t)} dt = c \left[z - \frac{1}{2} (1+q_0) z^2 + O(z^3) \right]$$

This recovers for small z our linear relation (recall $z = \text{the doppler effect}$ $z = \frac{v}{c}$: $v = Ho$).
10.11

Friedmann-ology:

Let's return to our Friedmann and acceleration equations:

Friedmann Eqn:

\[
H^2 = \frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3} \rho - \frac{kc^2}{a^2}
\]

\[
\frac{\dot{a}}{a} = -\frac{4\pi G}{3} \left[\rho + \frac{3}{c^2} \dot{a} \right]
\]

\[
\rho = \omega \rho c^2
\]

We can rewrite the Friedmann equation in terms of the density parameter \(\Omega \).

If we define \(\Omega_c = \frac{3H^2}{8\pi G} \) to be the critical density, then

The Friedmann Equations can be written as

\[
H^2 \left[1 - \frac{\rho}{\Omega_c} \right] = -\frac{kc^2}{a^2}
\]

or

\[
\frac{kc^2}{a^2} = H^2 \left[\Omega - 1 \right]
\]

where \(\Omega \) (sometimes written as \(\rho \)) is the density parameter.

Note that because this is true at all times \(\Omega = \frac{\rho}{\rho_c} = \frac{\rho}{\rho_c} \),

It's true today

\[
\frac{kc^2}{a_0^2} = H_0^2 \left[\Omega_0 - 1 \right]
\]

This relation says that \(k \) and \(\Omega_0 \) determine each other.
\[k = 1 \rightarrow \Omega_0 > 1 \\
\]
\[k = -1 \rightarrow \Omega_0 < 1 \\
\]
\[k = 0 \rightarrow \Omega_0 = 1 \]

This equation also gives you \(a_0 \)
\[a_0 = \frac{c^2}{H_0^2} \left(-2 \ln(1) \right)^{-\frac{1}{2}} \quad (\text{is } k \neq 0) \]

To go further, we have to understand the function \(g(a) \) (and \(P(a) \)).

A customary way to do this is to consider the first law of thermodynamics:
\[dQ = dE + PdV \]

If the universe is expanding homogeneously, there is no bulk flow of heat \(dQ = 0 \rightarrow \text{adiabatic} \)

So
\[\frac{dE}{dt} + P \frac{dV}{dt} = 0 \]

\[E \propto \rho c^2 V \quad \text{so} \quad \frac{dE}{dt} = \rho c^2 V \frac{dP}{dt} + P \frac{dV}{dt} \]

\[\frac{dV}{dt} \rightarrow V a \frac{da}{dt} \quad \text{so} \quad \frac{dV}{dt} = 3a^2 \frac{d(a)}{dt} = 3a^2 \left(\frac{a}{a} \right) \Rightarrow \frac{dV}{dt} = 3 \frac{d(a)}{dt} \]

\[\rightarrow \text{So for an adiabatic flow} \]
\[\left[\rho \frac{c^2}{a} + \frac{3a^2 P a^2}{a^2} + \frac{P a^2}{a} \right] V = 0 \]

\[\rightarrow \dot{S} = \frac{3a}{a} \left[\rho + P c^2 \right] \quad \text{This is known as the fluid equation} \]
The fluid equation is not completely independent of the acceleration & equations of state

Fluid eqn \Rightarrow Friedmann eqn

But it’s nice that they are consistent

Let’s imagine we have an equation of state $P = \omega P c^2$, so $P/c^2 = \omega P$

The fluid equation then says

$$\dot{a} = -3 \frac{\dot{a}}{a} \left[1 + \omega \right] \dot{a}$$

$$\Rightarrow \frac{\dot{a}}{a} = -3 \left[1 + \omega \right] \frac{\dot{a}}{a} \quad \text{for constant } \omega$$

This has an extremely simple solution:

$$a = \left[\frac{a}{a_0} \right]^{-3(1+w)}$$

For matter $\omega = \frac{\rho}{c^2} = 0$ (Baryons, cold dark matter)

$$a = a_0 \left[\frac{a}{a_0} \right]^{-3} \quad \text{(just volume expansion)}$$

For radiation

$$P = \frac{\rho c^2}{3} = \frac{\epsilon}{3} \Rightarrow \omega = \frac{1}{3}$$

$$a = a_0 \left[\frac{a}{a_0} \right]^{-4} \quad \text{(volume expansion + redshift)}$$
11.4

For a "dark energy" with $\Omega = 1$,

$$(\rho = -\rho c^2) \rightarrow$$

$$\Omega = \Omega_0 (a_0 / a) = \rho / \rho_c \rightarrow \text{a constant}.$$

What does this mean?

$$dQ = 0 \rightarrow dE + P dV = 0$$

Fluid equation

$$\dot{\rho} c^2 = 3\dot{a} a \left[(\rho + P) / c^2 \right]$$

If it's a constant density, LHS is zero.

1st law of thermodynamics is satisfied (for $P = -\rho c^2$).

Example of a scalar field:

$$P c^2 \sim \frac{1}{2} \dot{\phi}^2 + V(\phi)$$

$$P \approx \frac{1}{2} \dot{\phi}^2 - V(\phi)$$

For $\dot{\phi} \ll V(\phi)$:

$$\dot{\rho} c^2 \approx -P$$

$\rightarrow \omega \rightarrow -1$

If we consider a universe made up of lots of components:

$$\Omega (a) = \Omega_R + \Omega_{NR} + \Omega_{\phi}$$

$$\approx \Omega_{R}(a_0)^{-4} + \Omega_{NR}(a_0^{-3}) + \Omega_{\phi}$$

$$= \Omega_{R} \left[\frac{\rho_{R}(a)}{\rho_c (a_0)^4} + \rho_{NR}(a_0^{-3}) + \rho_{\phi}(a_0)^{-1} \right]$$

$$= \rho_c \left[\frac{\rho_{R}(a)}{\rho_c (a_0)^4} + \rho_{NR}(a_0^{-3}) + \rho_{\phi}(a_0)^{-1} \right] = \rho_c \left[\Omega_{R}(a_0)^{-4} + \Omega_{NR}(a_0^{-3}) + \Omega_{\phi} \right]$$
\(11.5\)

Plugging this back into the Friedmann equation

\[
H^2 + \frac{kc^2}{a^2} = H_0^2 \left[\Omega_{\text{Rho}} \left(\frac{a_0}{a} \right)^4 + \Omega_{\text{NRho}} \left(\frac{a_0}{a} \right)^3 + \Omega_{\text{Vac}} \right]
\]

We can go further and recall that

\[
k^2 c^2 = H_0^2 \left(\frac{a^2}{a_0^2} \right) = \frac{\dot{a}}{a}
\]

\[
\Omega_{\text{Rho}} = \frac{\frac{k c^2}{a^2}}{\left(\frac{a_0}{a} \right)^2} \left(\frac{H_0^2}{\Omega_{\text{Rho}}^2} - 1 \right)
\]

\[
H_0^2 = H_0^2 \left[\Omega_{\text{Rho}} \left(\frac{a_0}{a} \right)^4 + \Omega_{b} \left(\frac{a_0}{a} \right)^3 + \Omega_{\text{Vac}} + \left(1 - \Omega_{\text{Rho}} \right) \left(\frac{a_0}{a} \right)^2 \right]
\]

Eqn. \(H(a)\)

Similarly, you can turn this into an eqn. for \(\Omega(a)\)

\[
\Omega(a) = \frac{\dot{a}}{a} - 1
\]

\[
+ \frac{1 - \Omega_{\text{Rho}} + \Omega_{b} + \Omega_{\text{Vac}} - \Omega_{\text{Vac}}}{1 - \Omega_{\text{Rho}} + \Omega_{b} + \Omega_{\text{Vac}} - \Omega_{\text{Vac}}}
\]

as \(a \to 0\) the denominator diverges; so \(\Omega(a) \to 1\) for \(a \to 0\)

(BC of radiation)

This implies that \(\frac{k c^2}{a^2} \to 0\) as \(a \to 0\) (interesting point)

We're now ready to tackle solutions to the Friedmann eqn

\[
\left(\frac{\dot{a}}{a} \right)^2 = \frac{\ddot{a}}{a} = H_0^2 \sqrt{F(a)}
\]

\[
\frac{da}{a} = H_0 \sqrt{F(a)} dt \Rightarrow \int_0^\tau \frac{da}{a} = \int_0^\tau \frac{dt}{H_0 \sqrt{F(a)}}
\]
11.6

\[t = \int \frac{da}{a \sqrt{F(a)}} \]

In general, this has to be evaluated numerically. Let's take some cases:

1) \(S_r < \Sigma_{n,0} = \Sigma_{r,0} = 0 \)

\[t = \frac{1}{H_0} \int \frac{da}{a \sqrt{\Omega_{r,0} a_0^3}} = \frac{1}{H_0 \sqrt{\Omega_{r,0} a_0}} \int da \]

\[t(\infty) = \frac{1}{H_0 \sqrt{\Omega_{r,0} a_0}} \]

\[\alpha \rightarrow \frac{\alpha}{a_0} \quad H_0 \sqrt{\Omega_{r,0}} \quad \text{trivial} \]

\[\alpha \rightarrow a_0 \quad \text{hot} \quad \text{but} \quad 1 = \Sigma_{r,0} + \Sigma_{n,0} + \Sigma_{\Lambda,0} + \Sigma_{k,0} \]

Radiation.

This is important because

\[\lim_{a \rightarrow 0} \frac{\Theta}{a} \rightarrow \frac{\Theta}{a} \quad \text{(since it has the highest density dependence on } a) \]

Therefore, the early universe is radiation dominated.

\[\int_{t_0}^{t} dt = \frac{1}{H_0} \int_{0}^{a} \frac{da}{a \sqrt{\Omega_{r,0} a_0^3}} \]

\[= \frac{1}{H_0} \int_{0}^{a} \frac{da}{\sqrt{\Omega_{r,0} a_0^2} \left(\frac{1}{1+z} \right)^2} \]

\[= \frac{a^2}{2 H_0 a_0^2 \sqrt{\Omega_{r,0}}} \rightarrow \frac{(\frac{\alpha}{a_0})^2}{2 H_0 t \sqrt{\Omega_{r,0}}} \]

or

\[(1+z) \alpha \times t^{\frac{1}{2}} \]
12.1

Note that there is an easy mapping between redshift and time (and temperature and time), since $T = T_0 (1+z)$.

Two more simple cases

$\frac{\text{NR matter}}{t} = \frac{1}{H_0} \int \frac{da}{a \sqrt{\Omega_{\text{m}} a^3 + \Omega_{\text{r}} a^3}}$

$= \frac{1}{H_0} \int \frac{a^{1/2} da}{\sqrt{\Omega_{\text{m}} a^3 + \Omega_{\text{r}} a^3}} = \frac{2}{3 H_0 \sqrt{\Omega_{\text{m}}}}$

$t = \frac{2}{3 H_0 \sqrt{\Omega_{\text{m}}}} \left(\frac{a}{a_0} \right)^{3/2}$, $a \propto t^{2/3}$

$t \propto (1+z)^{-3/2}$

In general, if $\omega \neq -1$

$a(t) \propto t^{2/3 (\Omega_0)}$

$\omega = -1$ is a special case:

$t = \frac{1}{H_0} \int \frac{da}{a \sqrt{\Omega_{\text{m}} a^3 + \Omega_{\text{r}} a^3}}$

$= \frac{1}{H_0} \left[\ln \left(\frac{a}{a_{\text{min}}} \right) \right]_{\Omega_{\text{m}} = \Omega_{\text{r}}}$

If $a_{\text{min}} < 1$, then t diverges.

$A \propto e^{H_0 t}$

\rightarrow exponential growth.

These limiting solutions are valid for when one term in the "density" dominates over the others.
12.2

In general, you have different "eras"

\[a \sim e^{\frac{t}{\chi}} \text{ radiation} e^{\frac{t}{\Omega}} \text{ matter} \]

\[e^t \sim \text{ dark energy} \]

Note because any of the \(\Omega_{K,0} \) or \(\Omega_{\Lambda,0} \) could be zero you don't have to have these eras.

Furthermore even if they exist it's possible to "miss eras". For example in our universe \(\Omega_{K,0} = 0 \) and \(\Omega_{\Lambda,0} \approx 0.7 \) That means the universe transitioned directly from matter to DE -- it skipped the "curvature era".

The transitions are controlled by the values of the Ks. However, one point remains fixed: The Universe started radiation dominated (this will be important for Chapter 4).

In our specific Universe \(\Omega_{\Lambda,0} \) is high enough that we didn't have a "matter era", so there was a transition between radiation and matter, and at a time of matter-radiation equality, when

\[P_r = P_{\Lambda,0} \text{ occurred} \]

\[P_r(a_0) = P_{\Lambda,0} \left(\frac{a_0}{a} \right)^3 \longrightarrow \frac{1}{(1+z)^3} \frac{a_0}{a} = \frac{P_{\Lambda,0}}{P_{\Lambda,0}} \]

\(P_{\Lambda,0} \) can be determined because the majority of the energy density is in the CMB:
For a space filled with a blackbody
\[P_r = \left(\frac{\pi^2}{15} \right) K B^4 T^4, \quad P_c = \frac{3h c^2}{8\pi^6} \]
\[\Rightarrow \quad R_{R,0} = 2.56 \times 10^{-2} {h}^{-2} \]
\[\Rightarrow (1 + \zeta) = 3.9 \times 10^{-4} R_{NR,0} {h}^2 \]
\[T_{eq} = T_0 (1 + \zeta) \approx 1.06 \times 10^5 R_{NR,0} {h}^2 \]
\[K = 9.24 (R_{NR,0} {h}) \]

2-component universes

It turns out that there is an analytic solution to \(t(a) \) is only matter and radiation exist:

\[H_{eq} t = \frac{2}{3} \left[\left(\frac{a}{a_{eq}} - \frac{1}{3} \right) \left(\frac{a}{a_{eq}} + 1 \right)^{1/2} + 2 \right] \]

How did this get here:

\[\left(\frac{a}{a_c} \right)^2 = H_0^2 \left[\Omega_R (\frac{a_c}{a})^4 + \Omega_N (\frac{a_c}{a})^3 \right] \]

\[\int dt = H_0^2 \int \frac{da}{a} \sqrt{R_{LR}(a) + R_{NR}(a)} \]

but \(a_0 \left(\frac{R_{NR}}{\rho_{eq}} \right) \approx a_{eq} \)

So this is:

\[\mathcal{H} \left(\frac{a}{a_c} \right) = \frac{1}{H_0 a_0^2 \sqrt{R_{LR}}} \int \frac{a da}{\sqrt{1 + \frac{a}{a_{eq}}} x} \Rightarrow \text{for } \int x dx \frac{1}{1 + bx} \]

This integral can be looked up; its answer is

\[-a \left(2 \frac{a}{a_c} \right) a_{eq}^2 \left(1 + \frac{a}{a_c} \right)^{1/2} + C \]

Requiring \(t = 0 \) when \(a = a_0 \), yields our constant:

\[C = \frac{1}{3} a_{eq}^2 \]
12.4

So (factor out a_e^2)

$$
\epsilon = \frac{1}{H_0 \alpha^2 \sqrt{\Omega_R}} \left[2 \left(\frac{a}{a_{eq}} - 2 \right) \left(1 + \frac{a}{a_{eq}} \right)^{\frac{1}{2}} + \frac{4}{3} \right]
$$

$$
= \frac{1}{H_0 \sqrt{\Omega_R}} \left(\frac{a_e^2}{\alpha^2} \right) \frac{2}{3} \left[\left(\frac{a}{a_{eq}} - 2 \right) \left(1 + \frac{a}{a_{eq}} \right)^{\frac{1}{2}} + 2 \right]
$$

Padmanabhan writes this in terms of Heq^2.

Using the Friedmann equation

$$
H^2 = \frac{8\pi G \rho}{3}
$$
at equality $\rho = \rho_R + \rho_{\text{neq}} = 2\rho_R = 2\rho_{\text{Ro}} (1 + \text{Heq})^4$

$$
\text{but } \rho_{\text{eq}} = 3H_0^2 \rightarrow \frac{8\pi G}{3} = \frac{H_0^2}{\rho_{\text{eq}}}
$$

So $\Omega_{\text{eq}}^2 = H_0^2 2\rho_{\text{Ro}} (1 + \text{Heq})^4$

$$
\rightarrow \text{Heq} = H_0 \sqrt{\rho_{\text{Ro}} (1 + \text{Heq})^2}
$$

$$
\rightarrow \epsilon = \frac{\sqrt{2}}{3 \text{Heq}} \left[\left(\frac{a}{a_{eq}} - 2 \right) \left(1 + \frac{a}{a_{eq}} \right)^{\frac{1}{2}} + 2 \right]
$$

So $t_{\text{eq}} = \frac{3 \sqrt{2}}{3 \text{Heq}} \left[2 - \sqrt{2} \right] \approx \frac{5\sqrt{2}}{\text{Heq}}$

For $k < 0$

$$
\text{Heq} = H_0 \sqrt{2\rho_{\text{Ro}} (1 + \text{Heq})^2}
$$

$$
\text{t}_{\text{eq}} = \frac{5\sqrt{2}}{\sqrt{2} H_0 \sqrt{2\rho_{\text{Ro}}}} (1 + \text{Heq})^{-\frac{3}{2}}
$$

but $(1 + \text{Heq}) \approx 3.9 \times 10^4 \left(\frac{\rho_{\text{neq}}^2}{H_0^2} \right)^{\frac{1}{2}}$

$$
H_0 \approx 3.1 \times 10^7 \text{ m/s}
$$

$$
\text{so } t_{\text{eq}} \approx 1.57 \times 10^{10} \left(\frac{\rho_{\text{neq}}^2}{H_0^2} \right)^{\frac{1}{2}} \text{ seconds} \lesssim 10^4 \text{ years}
$$